
 1

Numerical Simulation of the Eddy System  
on the Basis of the Boltzmann Equation 

V.V.Aristova, O.I.Rovenskayab 

aDorodnicyn Computing Centre of Russian Academy of Sciences, Moscow, Russia 
bUniversity of Udine, Udine, Italy 

Abstract. The aim of present work is to investigate the feasibility of applying a kinetic approach to the problem of 
modeling turbulent or unstable flows. We perform three-dimensional direct numerical simulations of the Taylor Green 
(TG) type conditions and decay of isotropic turbulence in periodic compressible flow. The simulation is based on the 
direct numerical solving the Boltzmann kinetic equation. For the regular initial condition the results show the 
fragmentation of the large initial eddies and subsequently the full damping energy of the system. Dependence of the 
kinetic energy on the wave number is obtained by means of the Fourier expansion of the velocity components. The decay 
exponent of the kinetic energy spectrum for both problems close to the value “-5/3”.  
Keywords: the Boltzmann equation, the Taylor Green condition, isotropic turbulence. 

INTRODUCTION 

So far turbulence presents different challenges to computational methods, especially for simulation of 
compressible flows at large Mach numbers. To date, most investigations of instability or turbulence in the literature 
are based on the continuum Navier-Stokes (NS) equations [1, 2]. In recent times, there has been increasing interest 
in computing flows with more fundamental kinetic equations for applications involving turbulence and instability 
which can give another opportunities in comparison with continuum one [3-6]. It was shown that for non equilibrium 
and unstable processes the utility of the NS equation may be limited due to rarefied gas effects or lack of appropriate 
constitutive or state relations. These effects can be potentially resolved at the kinetic level of flow description. It is 
expected that the application of the Boltzmann kinetic equation to the compressible turbulent flows will give more 
general and correct results. The problem of producing small eddies from large ones in the viscous flow field, which 
is considered to be one of the basic features of turbulent flows [7]. The kinetic energy exchange appears between 
eddy structures along with the dissipating energy into a heat. The problem was formulated and examined by Taylor 
and Green for the incompressible flow using NS equation [8]. In the initial field the series of vortex structures were 
given and solution was represented in the form of a power series in time. When the flow has a finite Reynolds 
number, the kinetic energy generated by velocity shear is dissipated by the smallest scales, which provides a simple 
model for the development of a turbulent flow and the cascade of energy from larger to smaller scales.  

STATEMENT OF THE PROBLEM AND NUMERICAL METHOD 

We consider 3D gas flow in a periodic domain using the direct numerical solution of the Boltzmann equation: 
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where ( , , )f f t x ξ  is the velocity distribution function, x = (x, y, z) and ξ = (ξx, ξy, ξz), ξ , *ξ , ξ , *ξ  are velocities  
of pair of particles before and after collision, J(f, f) is the collision integral, * g ξ ξ  is the relative velocity, and b, 
 are impact parameters, ν(f)f is the integral of “direct collisions”, ν(f) is the frequency of collisions and N(f, f) is the 
integral of “inverse collisions”. In the rest of the paper the non-dimensional formulation of the problem is used and 
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the scale quantities are the follows: * * / 2Tv RT v   (vT is the thermal velocity), the characteristic size of the 
flow L, effective radius σeff equals to the radius σ∞ of hard-sphere particles, characteristic density and temperature n* 
and T* respectively. Thus, non-dimensional variables are 3

* * */ , / σ , / , / ( )effv b b L f f n v   ξ ξ x x   . The initial 
conditions are given for the non dimensional Maxwell distribution function:  
 

 3/2 2
0 0 0( , , ) ρ (2π ) exp / 2Mf t T T x ξ c , 0 c ξ V , 0 0 0 0( , , )u v wV ,  

 
where ρ0 is its density, T0 is its temperature, u0, v0, w0 are its velocities, R is universal gas constant and x = (x, y, z). 
TG type initial conditions consist of a first-degree trigonometric polynomial in all directions: 
 

0 ( ) cos(α )sin(α )sin(α )u A x y zx , 0 ( ) sin(α ) cos(α )sin(α )v B x y zx , 0 ( ) sin(α )sin(α ) cos(α )w C x y zx , 

0ρ ( ) 1 sin(α )sin(α )sin(α )D x y z x , 0 ( ) 1 cos(α ) cos(α ) cos(α )T E x y z x ,        (2) 
 
where A, B, …, E are constants, α = 2π. For a random initial condition density ρ0 = 1, temperature T0 = 1 and 
magnitudes of velocities u0, v0, w0 obey the isotropic energy spectrum E(k) as [4] 
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02( / )2 4 exp k kE C k         (3) 
 
where k = 2 π n is wave vector, k0 = 10, k = |k|, C = const and  is the random number in [0, 1] for each combination 
of n = (n1, n2, n3), ni = 0, ±1, ±2, … , i = 1, 2, 3. For v0 and w0 the expressions are similar to (3). The boundary 
conditions are F(x+1) = F(x), for any F(x) of x. The Knudsen Kn, Mach M and Reynolds numbers can be written as  
 

λ /Kn L , λ=0.5 πμ 2 /RT p , /M V a , Re ρ / μVL , 2 2 2V A B C   , (4) 
 
where λ is mean free path, calculated using the expression for the hard – sphere model,  is dynamic viscosity, p is 
pressure, R is universal gas constant,  = 5/3 is specific heat ratio for monatomic gas, a is the speed of the sound. 

To discretize the Boltzmann equation, we introduce a uniform three-dimensional Cartesian grid {β} with 
equidistant nodes in velocity space and a three – dimensional grid {xi} in physical space. Introducing grid values, the 
obtained set of equations for fβ(x, t) can be numerically solved using time splitting method, which is obtained 
considering, in a small time interval t =tn+1-tn, the numerical solution of the transport step, approximated by a 
second-order accurate explicit conservative scheme based on the finite volume method (TVD approach): 
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and the space homogeneous collision step, approximated by an explicit-implicit approach [9, 10]: 
 

 1 1
β, β, β, β, β, β,/ 2π ν( ) ( , )n n n n n nf f t Kn f f N f f     i i i i i i , * 1

β, β,
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where i = (i, j, k) and  are indexes in physical and velocity spaces, respectively, β, 1/2

nF i  is the numerical flux. For 
collision integral, written in BGK form, the explicit-implicit scheme approximated the collision step transforms to 
the implicit scheme since density, velocity and temperature are constant at the uniform relaxation stage 
 

        1 1 1 1 1 1 1 1
β, β, β,( ) / τ(ρ , , ) (ρ , , )n n n n n n n n n

Mf f t T f T f          i i i i i i i i iV V , 
 
where τ is the inter collision time. The implicit (or explicit-implicit) scheme is numerically stable, hence allows us to 
increase t and/or evolution time, while introducing the additional approximation error (time derivations of 
collisions integrals multiplied by t/Kn), thus the accuracy can be increased by decrease in t. Generally for the 
implicit scheme iterations for obtaining the collision integrals at the (n+1)-th time level are required, thus the 
explicit-implicit scheme can be considered as the first iteration of the iterative process. For some situations it is 
sufficient to use only first iteration, for example, in [5] it has been shown that for the developed turbulent flow (in 
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the shear layer of the supersonic jet flows) which is low from the kinetic point of view the use of first iteration is 
sufficient. To understand the character of implicit scheme the series of computation have been carried out using the 
implicit scheme for the BGK approximation of the collision integral. It was found that results from BGK equation 
are close to the Boltzmann ones. This gives us an indirect evidence of the adequacy of our approach. 

The Godunov method is applied to the linear advection equation for calculation of the numerical flux β, 1/2
nF i . 

The second-order accurate scheme (out of extrema and discontinuities) is obtained using the TVD reconstruction 
procedure with the minmod-type limiter function [11]. The time step is limited by the Courant condition: 
Δt = CFL min(Δx/ Vmax + Δy/ Vmax + Δz/ Vmax), where CFL is the Courant number, Vmax is a boundary of the velocity 
space and Δx, Δy and Δz are the mesh sizes in the x, y and z directions, respectively. The quasi - Monte-Carlo 
method, in which Korobov sequences are used [12], is employed for evaluation of ν(f) and N(f, f). Generally, the 
post-collision velocities do not coincide with grid nodes in the velocity space. Therefore, to ensure the execution of 
conservative laws the procedure of redistribution energy between nearest nodes of the velocity grid (for each 
collision) is used [13]. This approach provides with microscopic (kinetic) conservation for each collisions. For 
explicit –implicit scheme the procedure of conservative correction should be applied [9, 10] after collision step. If 

β,
ng i  is the solution of (6), then the conservative solution after the relaxation step is defined as: 

β β β β2
β, β, β, β, 0 1 2 3 4(1 ) (1 )n n n n

x y zf g P g a a a a a          i i i i , β2 β2 β 2 β2ξ ξ ξ ξx y z   , 
α α
β β, β β,β β

ξ ξ , α= 0,...,4n nf g i i        (7) 

where β,
nP i  is the corrected polynomial, β β βξ , ξ , ξx y z  are velocity components in the velocity node β. The polynomial 

coefficients a0, …, a4 are computed from the conservative laws of mass, impulse and energy (7). The correction 
procedure ensures the positive value of the distribution function after relaxation stage. Therefore, distribution 
function has acceptable accuracy even if coarse grid is used. Parallelization in physical space is made to improve the 
efficiency of the algorithm. Each processor is assigned its own set of points in physical space. The relaxation stage is 
calculated independently on the various processors. Before the stage of the free-molecular transport processors 
exchange data at neighboring points. The software code was written in C++ with the use of MPI (Message Passing 
Interface). The calculations have been conducted using multicores system consisted of 2 processes with 4 cores each. 

The main indication of the development of vortical cascade is the distribution of kinetic energy E(q) in the wave 
number space q (q is the wave vector). It is important to determine spectral properties of the flow. To construct the 
spectrum of the kinetic energy of the flow the following procedure is used [14]. An expansion in Fourier series of 
the components of velocity vector uijk, vijk and wijk, given on uniform Cartesian mesh, is defined as follows: 
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where i = 1,…, Nx, j = 1,…, Ny and k = 1,…, Nz are numbers of the grid, Lx, Ly and Lz are sizes of the computation 
domain, xijk, yijk and zijk  are coordinates in physical space. For vijk and wijk the expressions are similar to (8). Each 

value of the module of the wave vector 2 2 2( / ) ( / ) ( / )x y zq l L m L k L   , 
2 2 2

max ( / ) ( / ) ( / )x x y y z zq N L N L N L    corresponds to value of kinetic energy 2 2 2( ) / 2lmn lmn lmn lmnE u v w       
defining by different combinations of {l, m, n}. The interval (0, qmax) is divided into p number of the segments each 
with length Δq = qmax/p. Corresponding values of Elmn are summarized in each segment. The constructed in this way 
function is considered as a spectral characteristic of the flow field obtained by numerical modeling. The spectral 
function well describes all scales for p = 36, for larger p in the area of moderate and small scales the oscillations 
appear, possibly due to trigonometric factor.  

3D TAYLOR –GREEN PROBLEM 

Here we consider the 3D case represented by initial condition (2) and boundary conditions (4). We investigate 
several cases with the following initial amplitudes and different rarefaction: A = 0.5, B = C = -0.2, D = E = 0.01 for 
Kn = 0.01, Kn = 0.005 and Kn = 0.0025. Reynolds numbers varies from 63.8 to 255.3 respectively. For all cases the 
grid in the unit cube is 40 × 40 × 40, velocity space is limited by Vmax = 5 and the step in velocity space is ξ = 0.55. 
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The time step is chosen in such way that the particle does not pass the distance more than mean free paths and to 
avoid time step effect: t = 2×10-3 for Kn = 0.01, t = 10-3 for Kn = 0.005 and t = 5×10-4 for Kn = 0.0025. The 
CPU time was about 128 h (for Kn = 0.01) for fully damp flow until t = 1. In the Fig. 1 (a, b) the iso-surface and 
contours on the plane z = 0.5 of density and module of vorticity vector ω = ×v at the several time moments are 
shown. At the initial time moment macroparameters demonstrates the constant number of iso-surfaceses.  

 

          
t = 0: (a) ρ = 1.004   z = 0.5        (b)  = 3.13    z = 0.5  

      
t = 0.67: (a) ρ = 1.01  z = 0.5       (b)  = 1.9    z = 0.5  

      
t = 1: (a) ρ = 0.97   z = 0.5       (b)  = 1.4    z = 0.5  

FIGURE 1.  Iso-surfaces and contours on the plane z = 0.5 of density (a) and vorticity (b) at t = 0, 0.67 and 1 for 3D TG flow 
with A = 0.5, B = C = -0.2, D = E = 0.01 and Kn = 0.01. 

 
With time growth small scales appears, nevertheless from some time moment (t > 0.67) iso-surfaceses of the flow 

parameters remain quasi constant (Fig. 1). In Fig. 3 a changing of energy spectra is shown at several time moments 
t = 0.25, 0.67 and 1. The initial kinetic energy monotonous decays with time due to the absence of external sources 
and energy transfer from kinetic to internal modes due to viscous action. Nevertheless, at all time level spectrum 
demonstrates the slope “-5/3” for the inertial interval, corresponding the isotropic turbulence power law 
characteristic [15]. Spectrum of the kinetic energy for smaller Knudsen number is larger. Of course this case is far 
from isotropic turbulent state, but demonstrates a main feature of turbulence the forward cascade.  

ISOTROPIC TURBULENT FIELD  

3D decaying turbulence in the space periodic cube with the initial condition given by a local Maxwellian with a 
random – phase flow velocity (3) and a magnitude having an isotropic energy spectrum with C = 0.05, and a uniform 
density and temperature are considered. Knudsen, Mach and Reynolds numbers are Kn = 0.001, M = 0.584 and 
Re = 963 respectively. 40 × 40 × 40 division in the unit cube is set and velocity space is restricted to Vmax = 5, a 
velocity step size is Δ = 0.55. Computations have been carried out with Δt = 10-3, 2.5 × 10-4 and 10-4 to assess time 
step effect. Comparison of iso-surfaces of the density  and modules of vorticity  and their contours on the plane 
z = 0.5 (see Fig. 2) computed with last two time steps at various time levels shows that the difference between results 
is negligible. Fig. 2 demonstrates that the density distribution changes quickly to a turbulent state from the initial 
uniform state. At a relative small time the both figures of the density and vorticity distributions show patterns close 
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to the turbulent state. With time growth small scales join to each other and vortices become fewer. They are larger 
and sparser in space, and they undergo less frequent close encounters. Since those close encounters are the occasions 
when the vortices change through deformation in ways other than simple movement, the overall evolutionary rates 
for the spectrum shape and vortex population become ever slower, even though the kinetic energy does not diminish. 

An analysis of spectra, presented in Fig. 3 b, shows there are number of points lay on the lane with inclination “-
5/3”, as expected for the inertial interval of 3D isotropic turbulence [15]. After this interval graph of kinetic energy 
drops sharply. With time growth the inertial interval of wave numbers increases.  

 

       
t = 0.01 (Δt = 2.5 × 10-4): (a) ρ = 1.035  z = 0.5    (b)  = 5.5    z = 0.5 

       
t = 0.01 (Δt = 10-4): (a) ρ = 1.035   z = 0.5    (b)  = 5.5    z = 0.5 

      
t = 0.05 (Δt = 2.5 × 10-4): (a) ρ = 1.013  z = 0.5    (b)  = 1.5    z = 0.5 

       
t = 0.05 (Δt = 10-4): (a) ρ = 1.013   z = 0.5    (b)  = 1.5    z = 0.5 

       
t = 0.3 (Δt = 2.5 × 10-4): (a) ρ = 1.0045  z = 0.5    (b)   = 0.33    z = 0.5 
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t = 0.3 (Δt = 10-4): (a) ρ = 1.0045   z = 0.5    (b)   = 0.33    z = 0.5 

FIGURE 2.  Iso-surfaces and contours on the plane z = 0.5 of density (a) and vorticity (b) at t = 0.01, 0.05 and 0.3. 
 

(a)            (b)   
FIGURE 3.  Energy spectra Ekin(q) (a) for 3D TG flow with A = 0.5, B = C = -0.2, D = E = 0.01 at t = 0.25, 0.67 and 1 and 

Kn = 0.01, (b) for decaying isotropic turbulence at t = 0, 0.01, 0.03, 0.05, 0.1, 0.5 and 1. 

CONCLUSIONS  

The direct numerical solution of the Boltzmann equation based on an explicit-implicit approach was used to 
analyze the long time evolution of the viscous compressible weakly rarefied gas. Two kind of the initial conditions 
(TG and random velocity types) were considered. The development of initial state was demonstrated through the 
kinetic energy distribution. On the kinetic level considered process of energy transfer from large scales to small ones 
and sequential energy dissipation to heat. Moreover, computation for the space periodic flow started from a random 
velocity and uniform density and temperature exhibited a flow field pattern close to isotropic turbulence at the initial 
time moment. Discovered an inertial interval with the exponent “-5/3”, predicted for 3D isotropic turbulence, which 
growths with time.  
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